HEBSE

Holistic Exploration of
Binary Stellar Evolutions

SDMay25-20

Members: Andrew Snyder, Alex Polston, Alek Norris,
Eamon Collins, James Byrd, Svyatoslav Varnitskyy

Client & Advisor: Dr. Goce Trajcevski

_\ ‘ .Con’r.ex’r

Binary Stars: A pair of stars bound to
each other by gravity, revolving
around a common center of mass
within each others’ orbit

The POSYDON research project
simulates binary star system
evolution, generating massive
amounts of data

\ Problem Statement

Complex Query Example:

Problem - Currently there is no system to Find all systems which have a mass ratio
. . . between 0.5 and 0.7 and at some point an
effectively search the vast simulation data erlaiEl pentes e S e (00 sk
for particular subsets, i.e. a “complex query.’ S
"binary history"."model number",
Solution - Implement a software tool with Voilngiey flsiteny o Paga® RN
. .. ; "binary history"
an intuitive user interface, database setup, WHERE
complex querying, and data retrieval ("Mbameay Fastowy.Metar L mess”/
onC . . "binary history"."star 2 mass"
capabilities with optional OpenAl natural BETWEEN 0.5 AND 0.7 OR
language processing assistance. "binary history®."star_2 mass®
' /"binary history"."star 1 mass"
BETWEEN 0.5 AND 0.7)
AND

"binary history"."period days"
BETWEEN 5 AND 100

\ Project Overview

o Key Features: p—

o Import multivariable time-series ' | | ;K

simulation data into relational |
database

O Retrieval of previous queries
o0 Enable custom SQL and natural
language queries
e Deliverables:
0 Web Based Application
O Relational Database
o Data Ingestion Capability

\ R Ul Prototype

i @

I Q Query || ™ History II 9, utilities I £ Settings II @ user Manual “ © About I HEBSE

.

Welcome to HEBSE!
This interactive application is designed to help you query and explore datasets representing the
evolution of binary star systems. Whether you are an astrophysics researcher, student or just a
space enthusiast, HEBSE enables you to pose queries with an ease of LLM-based natural language
interface, while guaranteeing the consistency of robust database query processing. The data is
obtained from the publicly available POSYDON project (https://posydon.org/) and, as part of its
functionality, HEBSE enables you to use updated versions of the data.

-

Query Assistance ® SQL Query Input

. ./ Database is connected!
/" GPT Model is connected!

Ask GPT

+. QUERY

Enter your request or question to GPT. The system can help

format queries or provide general assistance.

T T

https://docs.google.com/file/d/1qQ5mYM99zds5aiuq2oa2z-n-bo7QMsx5/preview

Requirements

Functional Non-Functional
Correctly convert CSV files e Visually appealing and easily
into PostgreSQL database navigable user interface
Generate functional SQL e Time-efficient data parsing

queries from natural language | e Clear presentation of data
Previous and built-in requests | ® Secure data transmission and
are easily retrievable storage

N

Resource Requirements

Sufficient storage to maintain a large database
- Database can be local or remotely hosted

Sufficiently powerful computer to run the tool
- More powerful -> faster response times

OpenAl API key for NLP query assistance
- Optional, user choice

Risks Encountered & Mitigations

NN Mitigation

Security Encrypted credential storage, SSH
and HTTPS protocols.

e e

Limited Dataset | Parsing script designed to strictly |

Availability follow all known conventions |
NLP Query Thorough testing and training.
'| Inaccuracies Full disclosure of generated query to

user for vetting with results.

Desigh Decisions

System Chosen

Database management system - PostgreSQL [EEEgsrs
e Custom data types for data grouping and

ease of access

" User Interface - React
e Modular approach, quick and easy
modification of application components

Natural Language Processing - OpenAl API
e Easy integration with applications
e Offloads computational load to OpenAl

servers

interaction
User Interface React &

oint; captures
(UD TypeScript 5 5

inputs and

displays results

Central
processing
Backend Python tayer tc')r e
KOIIU]]:,Z,
validation, and
Al integration

Stores parsed
Database PostgreSQL |data and allows
SQL querying

Parses and
Puth normalizes raw
hon
° . CSV data and
(Custom-built) 2
prepares it for

Data Parser

database entry

Operations

Captures user
input for
queries,
provides

dynamic data

settings
Manages
commands,
connects
(‘omponeuls,
validates, and
processes
queries
Supports
relational
queries and
data retrieval
from parsed
CSVs
Reads, cleans,
normalizes
CSV files,
estimates

missing values,

ensures
consistency

Considered
Technologies
& Alternatives

Angular, Vue.js

MySQL,
SQLite,
DynamoDB,
MongoDB,
Neo4j

Pandas,
SQLAlchemy

Flexible,
widely
adopted for
UI; strong
community
support

Efficient for
scripting and
data handling;
extensive
libraries

Robust for
handling large
datasets;
advanced SQL
support

Customizable;
optimized for
POSYDONS
complex data
requirements

Complex setup
compared to
simpler UI
libraries

May need
additional
libraries for
certain
backend tasks

Requires setup
and
maintenance;
not as
lightweight as
SQLite

Requires
custom coding
for specific
data parsing
needs

N\

Implementation

Frontend GUI
CSS/React
Webapp

a

SQL Queries Response

Database
PostgreSQL
Local Device or
Server

SQL Query
SSH/local

Program Data

SSH/local Prompt and
Database Schema
- HTTPS
Backend >
Python

Query Response

SSH/local

Local Device or

Server

<

Generated Query
HTTPS

OpenAl API

7 4

l

Tech Stack

Back End - Python

+ TS

Front End - React + TypeScript

Database - PostgreSC_QL

P

~ LLM - Open Al

12

\

User Interaction Pathway

[Backend connects to the E User writes an SQL
> database ; query I_>
Uhex yoe deskfop .
application and mputs Query is performed
seftings »
| User writes a natural .| GPT translates the
EUAEE quet) et \ 4
No Returned results are
displayed to user
Does the user want to
Yes switch database v
versions? 1
Exit program Yes Doaﬁ thenserl wantto? User downloads results
No

13

Comprehensive Testing

Unit Testing:
- Vitest (frontend) and Tox (backend)
- 100% coverage

Regression Testing:
- GitLab pipeline utilized to run
regression tests prior to merging
- PyTest

Acceptance Testing:
- Client input into all stages of
development
- Feedback implementation ~ °

14 .

Final Thoughts

Achievements

Finalized an application °

that exceeds initial goals
Robust Ul for POSYDON

integration and offline ®
query support
Supports local, remote, and

hybrid backend modes o
Secured data in storage

and transmission with

encryption

Lessons Learned

Clear design goals from Fall
helped streamline Spring
development

Modular design allows for
easier component
development

A visually pleasing and
organized Ul is key for user
experience

15 .

Thank You

HEBSE cucctione

