
HEBSE
 Holistic Exploration of

Binary Stellar Evolutions

Members: Andrew Snyder, Alex Polston, Alek Norris,
Eamon Collins, James Byrd, Svyatoslav Varnitskyy

Client & Advisor: Dr. Goce Trajcevski

SDMay25-20

Context

Binary Stars: A pair of stars bound to
each other by gravity, revolving
around a common center of mass
within each others’ orbit

The POSYDON research project
simulates binary star system
evolution, generating massive
amounts of data

2

Problem Statement

Problem - Currently there is no system to
effectively search the vast simulation data
for particular subsets, i.e. a “complex query.”

Solution - Implement a software tool with
an intuitive user interface, database setup,
complex querying, and data retrieval
capabilities with optional OpenAI natural
language processing assistance.

3

Complex Query Example:
Find all systems which have a mass ratio
between 0.5 and 0.7 and at some point an
orbital period between 5 and 100 days.

SELECT
"binary_history"."model_number",
"binary_history"."age" FROM
"binary_history"
WHERE
("binary_history"."star_1_mass”/
"binary_history"."star_2_mass"
BETWEEN 0.5 AND 0.7 OR
"binary_history"."star_2_mass"
/"binary_history"."star_1_mass"
BETWEEN 0.5 AND 0.7)
AND
"binary_history"."period_days"
BETWEEN 5 AND 100

Project Overview
● Key Features:

○ Import multivariable time-series
simulation data into relational
database

○ Retrieval of previous queries
○ Enable custom SQL and natural

language queries
● Deliverables:

○ Web Based Application
○ Relational Database
○ Data Ingestion Capability

4

UI Prototype

5

6

https://docs.google.com/file/d/1qQ5mYM99zds5aiuq2oa2z-n-bo7QMsx5/preview

Requirements

7

Functional Non-Functional

● Correctly convert CSV files
into PostgreSQL database

● Generate functional SQL
queries from natural language

● Previous and built-in requests
are easily retrievable

● Visually appealing and easily
navigable user interface

● Time-efficient data parsing
● Clear presentation of data
● Secure data transmission and

storage

Resource Requirements

● Sufficient storage to maintain a large database
- Database can be local or remotely hosted

● Sufficiently powerful computer to run the tool
- More powerful -> faster response times

● OpenAI API key for NLP query assistance
- Optional, user choice

8

Risks Encountered & Mitigations

9

Risks Mitigation

Security Encrypted credential storage, SSH
and HTTPS protocols.

Limited Dataset
Availability

Parsing script designed to strictly
follow all known conventions

NLP Query
Inaccuracies

Thorough testing and training.
Full disclosure of generated query to
user for vetting with results.

Design Decisions

Database management system - PostgreSQL
● Custom data types for data grouping and

ease of access

User Interface - React
● Modular approach, quick and easy

modification of application components

Natural Language Processing - OpenAI API
● Easy integration with applications
● Offloads computational load to OpenAI

servers

10

Implementation

11

Tech Stack

12

User Interaction Pathway

13

Comprehensive Testing

14

Unit Testing:
- Vitest (frontend) and Tox (backend)
- 100% coverage

Regression Testing:
- GitLab pipeline utilized to run

regression tests prior to merging
- PyTest

Acceptance Testing:
- Client input into all stages of

development
- Feedback implementation

Final Thoughts

15

Achievements
● Finalized an application

that exceeds initial goals
● Robust UI for POSYDON

integration and offline
query support

● Supports local, remote, and
hybrid backend modes

● Secured data in storage
and transmission with
encryption

Lessons Learned
● Clear design goals from Fall

helped streamline Spring
development

● Modular design allows for
easier component
development

● A visually pleasing and
organized UI is key for user
experience

Thank You

16

Questions?

