HEBSE Holistic Exploration of Binary Stellar Evolutions

SDMay25-20

Members: Andrew Snyder, Alex Polston, Alek Norris, Eamon Collins, James Byrd, Svyatoslav Varnitskyy

Client & Advisor: Dr. Goce Trajcevski

Context

Binary Stars: A pair of stars bound to each other by gravity, revolving around a common center of mass within each others' orbit

The POSYDON research project simulates binary star system evolution, generating massive amounts of data

Problem Statement

Problem - Currently there is no system to effectively search the vast simulation data for particular subsets, i.e. a "complex query."

Solution - Implement a software tool with an intuitive user interface, database setup, complex querying, and data retrieval capabilities with optional OpenAI natural language processing assistance. Complex Query Example: Find all systems which have a mass ratio between 0.5 and 0.7 and at some point an orbital period between 5 and 100 days.

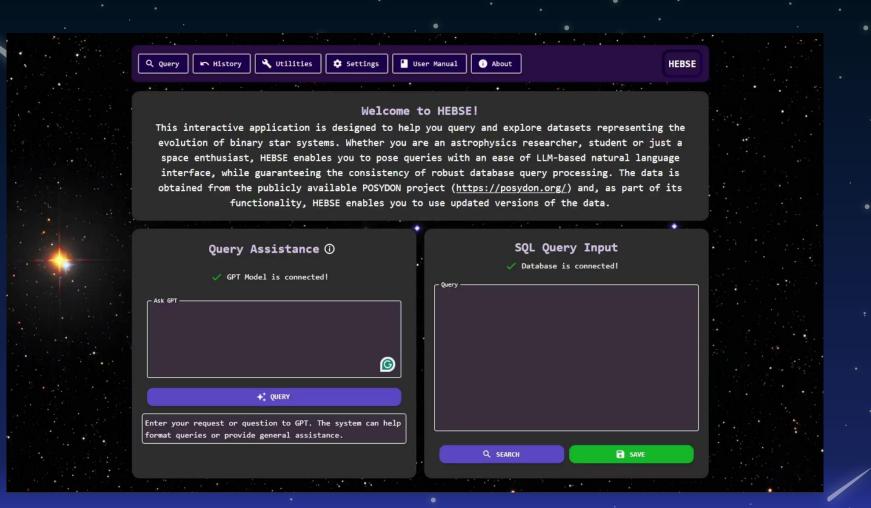
SELECT

"binary_history"."model_number",
"binary_history"."age" FROM
"binary_history"
WHERE
("binary_history"."star_1_mass"/
"binary_history"."star_2_mass"
BETWEEN 0.5 AND 0.7 OR
"binary_history"."star_1_mass"
/"binary_history"."star_1_mass"
BETWEEN 0.5 AND 0.7)
AND
"binary_history"."period_days"
BETWEEN 5 AND 100

Project Overview

- Key Features:
 - Import multivariable time-series simulation data into relational database
 - Retrieval of previous queries
 - Enable custom SQL and natural language queries
- Deliverables:
 - Web Based Application
 - Relational Database
 - Data Ingestion Capability

UI Prototype


🔍 Query 🖛 History 🌂 Utilities 🏟 Settings 🚯 About Us

How can I help?

Welcome to the Binary Star Query Bot! This interactive assistant is designed to help you explore and retrieve data on binary star systems with ease. Whether you're an astronomer, student, or space enthusiast, you can quickly access detailed information on various binary systems, including orbital periods, mass, luminosity, and more. Additionally, you can upload your own binary star data, and the bot will parse and integrate it for seamless querying. From answering general questions about binary stars to providing insights into specific systems, this bot is here to enhance your understanding of the fascinating world of stellar pairs. Let's explore the stars together!

5

Query

Requirements

	Functional	Non-Functional		
	 Correctly convert CSV files into PostgreSQL database Generate functional SQL 	 Visually appealing and easily navigable user interface Time-efficient data parsing 		
•	 queries from natural language Previous and built-in requests are easily retrievable 	 Clear presentation of data Secure data transmission and storage 		

Resource Requirements

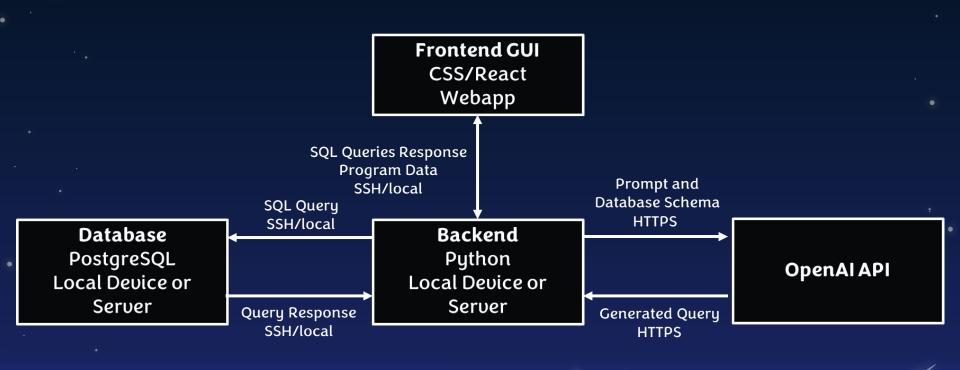
- Sufficient storage to maintain a large database
 Database can be local or remotely hosted
- Sufficiently powerful computer to run the tool
 More powerful -> faster response times
- OpenAl API key for NLP query assistance
 - Optional, user choice

Risks Encountered & Mitigations

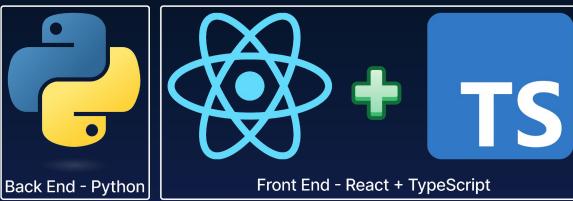
Risks	Mitigation		
Security	Encrypted credential storage, SSH and HTTPS protocols.		
Limited Dataset Availability	Parsing script designed to strictly follow all known conventions		
NLP Query Inaccuracies	Thorough testing and training. Full disclosure of generated query to user for vetting with results.		

Design Decisions

Database management system - PostgreSQL


- Custom data types for data grouping and ease of access
- User Interface React
 - Modular approach, quick and easy modification of application components

Natural Language Processing - OpenAI API


- Easy integration with applications
- Offloads computational load to OpenAI servers

System Component	Chosen Technology	Role	Operations	Considered Technologies & Alternatives	Pros	Cons
User Interface (UI)	React & TypeScript	Provides user interaction point; captures inputs and displays results	Captures user input for queries, provides dynamic data display, user settings	Angular, Vue.js	Flexible, widely adopted for UI; strong community support	Complex setup compared to simpler UI libraries
Backend	Python	Central processing layer for data routing, validation, and AI integration	Manages commands, connects components, validates, and processes queries	Node.js, Django	Efficient for scripting and data handling; extensive libraries	May need additional libraries for certain backend tasks
Database	PostgreSQL	Stores parsed data and allows SQL querying	Supports relational queries and data retrieval from parsed CSVs	MySQL, SQLite, DynamoDB, MongoDB, Neo4j	Robust for handling large datasets; advanced SQL support	Requires setup and maintenance; not as lightweight as SQLite
Data Parser	Python (Custom-built)	Parses and normalizes raw CSV data and prepares it for database entry	Reads, cleans, normalizes CSV files, estimates missing values, ensures consistency	Pandas, SQLAlchemy	Customizable; optimized for POSYDONS complex data requirements	Requires custom coding for specific data parsing needs

Implementation

Tech Stack

User Interaction Pathway

•

Comprehensive Testing

Unit Testing:

- Vitest (frontend) and Tox (backend)
- 100% coverage
- **Regression Testing:**
 - GitLab pipeline utilized to run regression tests prior to merging
 - PyTest

Acceptance Testing:

- Client input into all stages of development
- Feedback implementation

Final Thoughts

Achievements

- Finalized an application that exceeds initial goals
- Robust UI for POSYDON integration and offline query support
- Supports local, remote, and hybrid backend modes
- Secured data in storage and transmission with encryption

Lessons Learned

- Clear design goals from Fall helped streamline Spring development
- Modular design allows for easier component development
- A visually pleasing and organized UI is key for user experience

HEBSE

Thank You

Questions?