
HADES: Holistic 
Astronomical 

Database 
Exploration System

By: Andrew Snyder, Alex Polston, Alek Norris, 
Eamon Collins, James Byrd, Svyatoslav Varnitskyy

sdmay25-20

Client & Advisor: Dr. Goce Trajcevski



Binary Star System

● A pair of stars bound to each 
other by gravity

● Revolving around a common 
center of mass within each 
others orbit

● Provide one of the only ways to 
measure a stars mass

● Insight into stellar evolution

2



Project Overview

● Objective: Develop an intuitive system to 
query and display binary star data 
generated by the POSYDON simulation 
project

● Key Features:
○ Import multivariable time-series 

simulation data into relational database
○ Enable custom SQL and natural language 

queries
○ Provide predefined sample queries 

● Deliverables:
○ Web Based Application
○ Relational Database
○ Data Ingestion Tool

3



Concept
Web app for querying, database connection, and data ingestion

4



Users

5

Astrophysicists
Expert

Educators
Intermediate

Students
Novice



Requirements

● Scalability
● Visually appealing user 

interface
● Time-efficient data parsing
● Clear presentation of data

Functional Non-Functional

● Supports Custom and 
Built-in queries

● Converts natural language 
into SQL

● Saves queries
● Converts compressed csv 

files into database schema

6



Detailed Design

7



Tech Stack

8



User Interaction Pathway

9

*Entry Point*



Project Timeline and Management

10



Testing Strategy

11

● Project features highly dependent 
subsystems

● Complete automated testing 
coverage for all code

● Detailed results through manual 
testing process

● Team reviews of each change



Automated Testing

12

General
● Must automate unit, integration, and system tests for all new code
● Automation runs on commit to the team Git repository
● Acts as regression testing

Backend
● Unit Testing - Tox
● Integration Testing - Tox
● System Testing - Tox

Frontend
● Unit Testing - Jest
● Integration Testing - Cypress
● System Testing - Cypress



Manual Testing

13

Interface Testing
● Database: Query with list of sample queries, note results
● Backend: Run requests from team Postman group, note results
● Frontend: Navigate through website, record video

Acceptance Testing
● Continuous testing of functional components
● Collect numerical data on performance
● Discuss visual decisions as a team
● Review changes with client/advisor weekly



Initial Generated Query

NLP SQL ProtoTyping 
Prompting Queries and Results Native Data

14

The Question

Generated Query

Database Queried RAW H5 File

MASS < 5

Adjusted Query

No Results



Implementation

15

https://docs.google.com/file/d/1WLZ55xYdR25uqu8g6MLJugZ3REl-zrBr/preview


Ensuring Accuracy and 
Transparency in Query Generation

16



Risks & Mitigation

17

Risks Mitigation

Missing 
Deadlines

Strong communication and 
cooperation on tasks

Software 
Struggles

Use well-established technologies, 
be prepared to switch if necessary

Slow Database 
Querying

Index certain data for quick 
reference, or partition database. 
Mostly outside our scope

NLP 
Malfunctioning

Thorough testing and training



Future Plans
● Automate the setup process

○ PostgreSQL installation
○ Dependency configuration
○ Database initialization

● Improve Database & UI 
communication
○ Finish script integration

● Enhanced Functionality 
○ Query history & examples
○ GPT training for SQL schema 

and NLP improvements.
● GPT API Funding

Conclusions

18

Current State
● Client approves the design and 

early prototypes
● Prototypes

○ Frontend
○ Database proof of concept
○ Parsing Script
○ GPT Script

● Working front-back 
interconnection



Thank You

19

Questions?


